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Introduction

As markets emerge, it's important to provide structure and standards that enable market
development while avoiding choices that limit customer flexibility and agency. A typical structure
in computation markets such as homomorphic encryption is a standard interface language that
enables stratification of the market along natural boundaries of expertise. For example, standard
application programming interfaces provide this kind of stratification between application source
code — where product domain expertise is crucial — and lower-level library code — where
algorithm and optimization expertise is the critical element. With such stratification in place, the
different layers of expertise can work independently, so long as they agree to and abide by the
standard interface between them.

Often, we coin common terms to refer to the participants in this kind of stratification boundary.
One participant — often perceived as operating at a higher level of abstraction — is often termed
the caller, while the other — perceived as operating at a lower level — is often termed the
provider. We note that these boundaries between caller and provider often need to facilitate
two-way communication: the provider must advertise to the caller what capabilities and
limitations are available to the provider; and the provider must specify what operations to
perform, with what parameter settings, and in what order.

This specification aims to define such a stratification boundary. Roughly speaking, the boundary
we aim to define here lies between fully homomorphic encryption (FHE) libraries like HEaaN,
OpenFHE, and TFHE-rs on one hand, and purpose-built FHE acceleration hardware on the
other. Specifically, we aim to define a standard intermediate representation (IR) of FHE code
that is both easily generated by FHE libraries, and also easily translated to specific hardware
instruction set architectures for FHE. This IR is a two-way communication channel, where
hardware participants can advertise metadata such as supported parameter ranges and
operations, and where library participants can specify parameter choices, relevant cryptographic
assets (such as computation keys), and streams of instructions to process ciphertexts.

We leverage ideas in this specification from the emerging IR for zero-knowledge proofs
developed in part during the DARPA SIEVE program and further developed by ZKProofs.org:
https://github.com/sieve-zk/ir/raw/main/v2.2.0/sieve-ir-v2.2.0.pdf

Polynomial IR

Mathematical Context

Mathematically, a ciphertext in a fully homomorphic encryption scheme based on the Ring
Learning With Errors (RLWE) problem is a pair of elements — polynomials — of the quotient of
the ring of integers of a cyclotomic field by a product of distinct primes. Concretely, a ciphertext
can be represented as a pair of vectors, where each entry of each vector is a residue modulo


https://github.com/sieve-zk/ir/raw/main/v2.2.0/sieve-ir-v2.2.0.pdf

the ciphertext modulus (the product of the primes), and the length of each vector is the ring
dimension (the degree of the polynomial defining the cyclotomic field).

It is worth mentioning that two other ciphertext representations are used in some FHE schemes
-- in particular, the FHEW and TFHE (also called CGGI) schemes. The first one is based on the
original learning with errors (LWE) problem, where ciphertexts may be seen as vectors of
elements without any additional structure. The second one, known as general learning with
errors (GLWE) or module learning with errors (MLWE) , is a generalisation of LWE and RLWE
where a ciphertext is comprised of k+7 polynomials of degrees at most N-1, where k and N are
two positive integers. The LWE and RLWE cases correspond to the extreme values N = 1 and k
= 1, respectively. However, in this document we will primarily focus on RLWE ciphers because,
to our knowledge, most GLWE operations may be expressed as combinations of RLWE
operations. As such, unless stated otherwise, ciphertexts in this document are thus assumed to
be RLWE ciphertexts, and we will comment on where the LWE or GLWE case requires specific
considerations.

Because the ciphertext modulus is typically much larger than a machine word and because the
polynomial defining the cyclotomic field is of a large degree, efficient implementations represent
these vectors in what is known as double-CRT representation, based on the Chinese
Remainder Theorem (CRT). The first CRT layer uses the residue number system (RNS) to
decompose each residue polynomial modulo the ciphertext modulus into a vector of residue
polynomials modulo each of the prime factors of the ciphertext modulus. This first layer
produces the coefficient representation of the residue polynomial. Since each prime factor of the
ciphertext modulus is typically chosen to fit into a single machine word, this form permits fast
modular addition and subtraction of residue polynomials. The second CRT layer uses the
negacyclic number theoretic transform (NTT) to convert a residue polynomial from the
coefficient representation to the evaluation representation. While the evaluation representation
also permits fast modular addition and subtraction of residue polynomials, it is the only
representation that permits fast modular multiplication of residue polynomials. Thus, overall, the
double-CRT representation allows us to represent each vector of a ciphertext as a matrix of
small residues that enables efficient arithmetic by component-wise modular operations in
machine words.

Here again the TFHE scheme is an outlier, as it allows for a much smaller modulus, which may
also be a power of 2. In this case, it may be more efficient to use Fourier transforms (FFTs)
instead of NTTs. Most of the description below still applies to this case (with a number of moduli
set to 1), and we will comment explicitly on where the specificities of the TFHE scheme require
separate considerations.

Organizational Preface

In the sections that follow, we specify the basic types and baseline instructions that any
hardware compliant with this specification are required to implement, subject to any advertised
limits on parameters (e.g. available ring dimensions or moduli) supported by the hardware.



We then define the notion of gadget as an instruction that is implementable in terms of basic
type and baseline operations that some hardware may choose to implement directly.

Next, we lay out some examples of optional data types and optional instructions that some
hardware may choose to implement. Within the space of optional instructions, we recognize at
least two initial likely points of focus: first, providing support for non-integer versions of the
baseline operations, and second, much more broadly, to provide direct hardware
implementations of higher-level functionality.

Finally, we define upward advertisements: capabilities expressible in this IR that can be
advertised by hardware upward to the software layer, allowing compilers to take advantage of
those capabilities.

Basic Data Types

These data types are required to be implemented by any hardware compliant with this
specification.

Polynomial

The first basic data type is a polynomial. The data required to specify a polynomial is its vector
of components (coefficients for the coefficient representation, or values for the evaluation
representation), and the following metadata fields:

e A field specifying whether the polynomial is "integer" or “non-integer”. The “integer” case
is intended to support components modulo prime and composite integer moduli, and the
“non-integer” case is intended to support components that are fixed point (e.g. 64-bit
integer with binary point location) or floating point values (e.g. float32).

e A field specifying the “ring dimension”.

In what follows, we will often refer to polynomials according to this first metadata field — i.e.
integer polynomials and non-integer polynomials. Additionally, based on context, we sometimes
refer to integer polynomials as single-residue polynomials for clarity.

Scalar

The second basic data type is a scalar. The data required to specify a scalar is its value and the
following metadata fields:

e A field specifying whether the scalar is "integer" or “non-integer”. The “integer” case is
intended to support values modulo prime and composite integer moduli, and the
“non-integer” case is intended to support fixed point (e.g. 64-bit integer with binary point
location) or floating point values (e.g. float32).

In what follows, we will often refer to scalars according to this metadata field — i.e. integer
scalars and non-integer scalars.



Baseline Instructions

These operations are required to be implemented by any hardware compliant with this
specification, under the limitations (e.g. available ring dimensions or moduli) advertised upward
by the hardware.

For the following instructions, we shall use this notation:
o a=1(agay...ay-1),b=(bo,by,..by-1) gre input integer polynomials.
e “ is aninput integer scalar.
e 9 is amodulus.
o f=Uofufu-1isan output integer polynomial.
o [klm is short for (kmodm)

Polynomial Addition

Takes as input two integer polynomials, a and b, and a modulus, g, and returns a single integer
polynomial modulo q. The return value is the component-wise sum of a and b reduced modulo

q.

f = sr_addp(a,b,q) = fi=la; + blg

Polynomial Scalar Addition

Takes as input an integer scalar, s, an integer polynomial, a, and a modulus, q, and returns a
single integer polynomial modulo q. For a in the evaluation-representation, the operation adds s
to every component of a, and returns the component-wise sum reduced modulo q. For a in the
coefficient-representation, the operation adds s to the first coefficient of a modulo g and returns
the resulting polynomial.

f = sr_addps(a,s, q) = fi =la; +slg

f = sr_addps_coeff(a,s,q)  — fo =I[ao +slg fizo =[a=og

Polynomial Negation

Takes as input a single integer polynomial, a, and a modulus, g, and returns a single integer
polynomial. The return value is the component-wise negation of each component of a modulo q.
This operation is explicitly included to allow polynomial subtraction to be defined as negation
followed by addition.

f = sr_negp(a,q) = fi = [-ail,



Polynomial Subtraction

Takes as input two integer polynomials, a and b, and a modulus, q, and returns a single integer
polynomial modulo q. The return value is the component-wise difference of the first input
polynomial, a, and the second input polynomial, b, reduced modulo g.

f = sr_subp(a,b,q) = fi=la; — b,

Polynomial Scalar Subtraction

Takes as input an integer scalar, s, an integer polynomial, a, and a modulus, q, and returns a
single integer polynomial modulo q. For a in the evaluation-representation, the operation
subtracts s from every component of a, and returns the component-wise difference reduced
modulo q. For a in the coefficient-representation, the operation subtracts s from the first
coefficient of a modulo q and returns the resulting polynomial.

f = sr_subps(a, s, q) = fi =la; — slg

f = sr_subps_coeff(a,s, q) = fo = lag —slq, fiso = [aiolq

Polynomial Multiplication

Takes as input two integer polynomials, a and b, and a modulus, g, and returns a single integer
polynomial modulo q. The return value is the component-wise product of a and b reduced
modulo q. Note that this only represents the polynomial product of a and b if they are both in the
evaluation representation.

f = sr_mulp(a,b,q) = fi=la;- b,

Polynomial Scalar Multiplication

Takes as input an integer scalar, s, an integer polynomial, a, and a modulus, q, and returns a
single integer polynomial modulo q. The return value is the component-wise product of every
component of a by s reduced modulo q.

f = sr_mulps(a,s,q) = fi =la; - slg

Negacyclic NTT

Takes as input an integer polynomial, a, and a modulus, g, and returns the integer polynomial
that is the result of applying the negacyclic number theoretic transformation (NTT) relative to g
to a. More precisely, this takes a from the coefficient representation relative to g to the
evaluation representation relative to q. The action of this instruction is represented by the
following formula:



=0

N-1
~f= [Z a - I+

f =sr_NTT(a,q) q
where vy denotes a 2N-th primitive root of unity modulo q. Hardware implementations may either
support a way to set the value of y to be used for each modulus, and/or a mechanism (e.g. via a
look-up table) to set it automatically.

Inverse Negacyclic NTT

Takes as input an integer polynomial, a, and a modulus, q, and returns the integer polynomial
that is the result of applying the inverse negacyclic number theoretic transformation (INTT)
relative to g to a. More precisely, this takes a from the evaluation representation (frequency
domain) relative to g to the coefficient representation (time domain) relative to q. The action of
this instruction is represented by the following formula:

N-1

YoINT1 Z a- W2t

=0

f =sr_iNTT(a,q) q
where vy denotes a 2N-th primitive root of unity modulo q. Hardware implementations may either
support a way to set the value of y to be used for each modulus, and/or a mechanism (e.g. via a
look-up table) to set it automatically.

General Permutation

Takes as input a single polynomial, a, and two parameters vectors, srcs and signs, of the same
length as a, where the entries of srcs are the integers between 0 and N-1 (representing the
indices of a under the desired permutation), and the entries of signs are all either 1 or -1
(representing whether to flip the sign of the corresponding entry). Returns a polynomial of
values originating from a according to indices from srcs, with sign-flips according to vector signs.
Implementing the sign flip requires an additional parameter g, the modulus.

sres, signs; =1

f = sr_permute(a, srcs, signs, q) [_“sr‘csi]q signs; = —1

Halt

This operation tells the machine to stop and notifies the host. The mechanism of notification is
machine-specific.



Gadgets

This specification recognizes that relying solely on baseline, single-residue polynomial level
operations and data types may hinder the development of higher-level optimizations directly in
hardware. This limitation can also result in large, cumbersome code with many repetitions.

To address these issues, this specification introduces the notion of gadget. A gadget
(respectively, data gadget) is a compound operation (respectively, data type) that can be
expressed completely in terms of baseline operations (respectively, basic types). The purpose of
defining the notion of gadget is to allow hardware vendors to provide direct hardware
implementations of higher-level operations, while maintaining the ability for any hardware
implementing this standard to be able to run that higher-level operation by using its definition in
terms of baseline operations. Gadgets can then be incorporated into the code used by
everyone, but can be processed by the vendor’s backend compiler to run directly if the
hardware supports a gadget directly.

Due to the enormous span of possible gadgets of widely varying levels of complexity, we
propose the following initial mutually exclusive breakdown into classes:

e Class | (Simple): The proposed implementation of a gadget in this class in terms of
baseline/optional operations must be seen to be exactly equal by inspection to the
semantics of the gadget as described.

e Class Il (Complex): The proposed implementation of a gadget in this class in terms of
baseline/optional operations must be shown (say, using formal methods) to be
equivalent to the semantics of the gadget as described. Proof of this formal equivalence
must be provided when submitting such a gadget to be included in this specification.

Gadget Approval Process

The proposed process of adding a new gadget definition to this specification shall include, at
minimum, a presentation of the proposed gadget to the FHETCH technical committee, who will
decide according to criteria such as sufficient verification data, usability, generalization versus
existing operation and gadgets, and more.

Example Potential Gadgets

Note that the proposed implementations of Class | gadgets in the current version of this
specification may contain pseudocode operators that are not defined by or included in this
specification. These operators are used for mathematical rigor (such as constructors of data
types with empty, zero, or other predefined values) and readability purposes (such as loops, and
general index arithmetic).



Polynomial Gadgets

These gadgets work with the basic polynomial data type.

For convenience when writing pseudocode here, we define syntax for a zero polynomial
constructor, which takes as input a ring dimension N, and returns a polynomial of ring dimension
N, and whose coefficients are all equal to zero.

f = sr_zeros(N) =f=0

Galois Automorphism

Takes as input a single integer polynomial, a, and an odd integer between 1 and 2N - 1, where
N is the ring dimension of the polynomial. Returns the result of applying the Galois
automorphism corresponding to the given odd integer to a. There are separate operations for
evaluation representation and coefficient representation, the latter of which additionally requires
a modulus, q, as a parameter.

f = sr_automorph_eval(a, k)

- fi= Alk(2i+1)—1]ay
2

a; [kiloy < N

f = sr_automorph_coef f(a,k,q) = fiin = {[_ai]q [kiloy = N

Pseudocode using the general permutation baseline operation:

def sr_automorph eval (x: SRP, k: int):

N = x.ring dimension
srcs = zeros (N) # initialize an array
signs = zeros (N) # initialize an array
for i in range(N):
srcs[i] = ((k * (2 * 1 + 1) - 1) % 2*N) // 2
signs[i] =1

return sr permute (x, srcs, signs, g=DontCare)

def sr_automorph coeff (x: MRP, k: int, g: int):

N = x.ring dimension
srcs = zeros (N) # initialize an array
signs = zeros (N) # initialize an array
for 1 in range(N) :
srcs[(k * 1) % N] = 1
signs[(k * i) $ N] = (-1) ** ((k * i) % (2 * N)) // N

return sr permute(x, srcs, signs, q)

Notes:
1.

Operators +,-,*,%,//,** in the macro have their python-syntax meaning (i.e. addition,
subtraction, multiplication, modulo, integer division, power).



2. In these two examples, none of the variables/inputs k,q, N, srcs, signs, i are
of datatypes this specification provides operations for. Only x and the return value are
of data type (single residue polynomial) that has operators specified for.

Negacyclic Rotation Automorphism

Takes as input a single coefficient mode integer polynomial, a, and a parameter offset (in range
0 and N-1), and a modulus q, where N is the ring dimension of the polynomial. Returns the
result of applying cyclic rotation of the polynomials’ coefficients by the given offset, including
accounting for required sign changes:

f = sr_rot_automorph_coeff(a,of fset, q)

Aitoffset]y i+offset <N
~ = [_a[i+offset]N]q i+offset=N

def sr_rot automorph coeff (x: MRP, offset: int, g: int):
N = x.ring dimension
srcs = zeros (N) # initialize an array
signs = zeros (N) # initialize an array
for i in range (N) :
srcs[i] = (1 + offset) % N
signs[i] = (-1) ** ((i + offset) // N)
return sr permute (x, srcs, signs, q)

Single-Residue Polynomial Array (SRPA)
This is a data type representing an array of single-residue polynomials (SRPs). We provide
syntax for three constructors for pseudocode:
e SRPA() creates an empty SRPA
e SRPA(n: uint) creates an SRPA containing n SRPs (initialised in an
implementation-dependent way)
e SRPA(p1, p2, .., pn) creates an SRPA containing the SRPs p1, p2, ..., pn

If a is an SRPA, u an unsigned integer, and p an SRP,
e a.length returns the number of elements in a
e alu] returnsthe elementuinaifu < a.length
e afu] = psetstheelementuofatopifu < a.length

Batch Fourier Transforms

These are direct and inverse Fourier transforms acting on arrays of SRPs.

Pseudocode:



def sr_batch_ft (x: SRPA):
y = SRPA(x.length)
for i in range(x.length):
ylil = sr_ft(x[i])
return y

Pseudocode:
def sr_batch_ift (x: SRPA):
y = SRPA(x.length)
for i in range(x.length):
y[i] = sr_ift(x[i])
return y

Multi-Residue Polynomial Gadgets

Multi-Residue Polynomial (MRP)

This is a set of polynomials together with a set of moduli where the two sets are required to be
the same size.

This is a convenience type for explicitly assigning a modulus to each polynomial. The set of
moduli can be accessed as an index set via the subfield “.base”.

A constructor for this type, generating an empty MRP with a given base can be of the form
M =MRP({a1,92,,qx})  with being moduli, or a constructor grouping several single-residue
polynomials together with the form M = MRP({sTpy, 572, TP} {41, G2 @} | with STPi being a

single-residue polynomial, and i being its appropriate modulus.

Multi-Residue Scalar (MRS)

This is a set of scalars together with a set of moduli where the two sets are required to be the
same size.

This is a convenience type for explicitly assigning a modulus to each polynomial. The set of
moduli can be accessed as an index set via the subfield “.base”.

A constructor for this type, generating an empty MRS with a given base can be of the form
M = MRS({q1,q2,,ax}) | with being moduli, or a constructor grouping several single-residue
scalars together with the form M = MRS({srs1, 575, . 575340192 ~ @} | with STPi being a

single-residue scalar, and 9: being its appropriate modulus.



Multi-Residue Arithmetic Gadgets

Note that these gadgets assume that both operands have the same base. Supplied is a
pseudocode describing an equivalent implementation in terms of baseline operations.

def mr addp (x: MRP, y: MRP):
z = MRP(x.base)
for g in x.base:
z[gl=sr_addp(x[ql, ylal, 9)
return z
def mr_subp (x: MRP, y: MRP):
z = MRP(x.base)
for q in x.base:
zlgl=sr_subp(x[ql, ylal, q)
return z
def mr mulp (x: MRP, y: MRP):
z = MRP(x.base)
for g in x.base:
z[gl=sr_mulp(x[ql, ylql, q)
return z
def mr mulps (x: MRP, s: MRS):
z = MRP(x.base)
for g in x.base:
z[gl=sr_mulps(x[ql, slql, 9)
return z
def mr _addps (x: MRP, s: MRS):
z = MRP(x.base)
for g in x.base:
z[gl=sr_addps (x[qgql], slgl, 9)
return z
def mr_ntt (x: MRP):
z = MRP(x.base)
for g in x.base:
zlgl=sr_ntt(x[gl, g)
return z
def mr_intt (x: MRP):
z = MRP(x.base)
for g in x.base:
z[gl=sr_intt(x[qgl, q9)
return z
def mr zeros(target base : set, N : integer):
z = MRP (target base)
for g in target base:
z[q] = sr zeros(N)
Return =z

MRP Residue Manipulation Gadgets

Pseudocode:



def mr_append srp (x: MRP, a: SRP, g a):
target base = x.base + {g a} # set union
z = MRP (target base)
z[g a] = a
for g in x.base:
zlq] = x[q]
return z

def mr union (x: MRP, y: MRP):
# assuming mutually exclusive bases for x and y
target base = x.base + y.base # set union
z = MRP (target base)
for q in x.base:

z[q] = x[q]
for g in y.base:
z[q] = ylql]

return =z

def mr subset (x: MRP, subbase : set):
# assume subbase is a subset of x.base
z = MRP (subbase)
for g in subbase:
z[q] = x[q]
return z

Fast Base Conversion
z = FastBaseConvert(x, B,,)

e Input: ¥~ {xﬂ-xl-'"-xf}, a coefficient-mode MRP in base Bsrc = {4001, -, @1}
e Input; Brar = {Po,p1, P} | 3 base, describing the target moduli

e Output: Z = (#0212} | 3 coefficient-mode MRP in base Brar = {Po, P, -, P}

Mathematical Description:

z; = [z]p, = Z [[xj : @j]qj - QJI]

_ P; oL G * .
4;€Bsre With % and 1 being scalars.

Pseudocode:

def FastBaseConvert (x: MRP, target base: set):
z = MRP (target base)

for g in x.base:
x[g]l=sr mulps (x[g], g hat(source base, qg), qg)

for p in target base:
for g in x.base:
temp = sr mulps(x[q], g star(g,p), p)
z[p] = sr addp(z[p], temp, p)

return z




CKKS Rescale using Fast Base Conversion
Z = RescaleFBC (x, B, csccate)

e Input: *~ {xo,x1, '"-xf}, a coefficient-mode MRP in base Bsrc = (90,41, -, @1}
° |nput: Bresccaie = {pﬂ-pl "t pk} c Bsrc
e Output: £ 7 {z0,21, '"'Zm}, a coefficient-mode MRP in base Btar = Bsrc\Bresceate

Mathematical Description:
y = FastBaseConvert(x, By - \Bresccate)

2 = lzlgenia, =[O = 31) Gl With 9t being scalars.
Pseudocode;
def RescaleFBC (x: MRP, rescale base: set):
target base = x.base - rescale base # set difference

z = MRP (target base)
y FastBaseConvert (x, target base)

for g in target base:

temp = sr_subp(x[ql, ylal, g)

z[g] = sr mulp(temp, g wave(x.base, q), qg)
return z

Multi-Residue Polynomial Array Gadgets

MRP Array (MRPA)

This is an array of MRPs. Each MRP may have a different number of residues, and a different
moduli base. The array length can be accessed as a subfield.

A constructor for this type, generating an empty MRPA (length 0) can be of the form

MA=MRPA( ) or a constructor grouping several MRPs together with the form

MA = MRPA({mrpy,mrpy, .., mrpe}) it mrp; being a multi-residue polynomial.

x.append (y) is pseudocode for in-place appending the MRP y in at the end of the MRPA x.

Multi-Residue Polynomial Array Gadgets
MRPA Dot-Product

Receives two MRP Arrays and returns single MRP, which is the dot-product operation between
the two arrays.

Pseudocode:
def dotproduct (x: MRPA, y: MRPA):
# assume x.length == y.length




# assume that x[i].base = y[]J].base for any i,]
target base = x[0].base
N = x[0] [0].ring dimension
z = MRP zeros (target base, N)
for i in range(x.length):
temp = mr mulp(x[i],y[i])
z = mr addp(z, temp)
return z

CKKS/BGV/BFV Digit Decomposition for Hybrid Key-Switching

Receives as input:
e A coefficient-representation MRP in RNS base representing modulus Q

e Alist of d mutually exclusive moduli bases, each representing modulus @: such that
Q::r]Qi

e RNS base representing the temporary modulus P

Returns as output:
e An MRPA, of length d, such elements i is an MRP that is a base extension to modulus

QP from base Q;

Pseudocode:
def dig_decomp (x: MRP, digit bases : list of sets, Pbase
set) :
target base = x.base + Pbase # set union
d = len(digit bases)
z = MRPA (d)
for i in range (d):
temp = mr subset (x, digit bases[i])
z[1i] = FastBaseConvert (temp, target base)
return z

GSW/RLWE External Product
Note that the following gadget uses the optional instructions for TFHE and FHEW.

The external product between GSW and RLWE ciphers is the main ingredient of the TFHE
scheme, used as the main building-block for the two main bootstrapping algorithms (circuit and
programmable). Here we provide a high-level description to show how it can be decomposed
into lower-level operations, as an example of a gadget that may be implemented in hardware.

Note: The choice of GSW/RLWE External Product as gadget is somewhat arbitrary, and
presented for illustration purpose only. Concrete hardware implementations may use
higher-level gadgets (such as Blind Rotation) to maximise the opportunities for dataflow



optimisation or lower-level ones (such as the Half external product) to provide compilers with
more flexibility.

Parameters:
e |: Number of levels for Gadget Decomposition
e B: Decomposition basis for Gadget Decomposition
e F: A negacyclic-Fourier-transform-like function; it could be a negacyclic Fourier transform
or negacyclic NTT
e iF: Inverse of the function F

Inputs:
e gsw: A GSW cipher comprising 4 / polynomials with integer coefficients.
e rlwe_in: An RLWE cipher comprising 2 polynomials with integer, real, or complex
coefficients

Output: an RLWE cipher

High-level description:
1. Run the Gadget Decomposition with parameters (/,B) on each of the two polynomials of
rlwe_in, producing 2 arrays a1, a2 of | polynomials.

2. Generate the polynomials p11, p12, p21, and p22 as follows:
a. p11is the dot product of the first | polynomials of gsw with a1
b. p12is the dot product of the polynomials | to 2I-1 of gsw with a1
c. p21 is the dot product of the polynomials 2/ to 3/-1 of gsw with a2
d. p22 is the dot product of the polynomials 3/ to 4/-1 of gsw with a2

3. Return the RLWE cipher (p11+p21, p12+p22).

Pseudocode:
def GSWRLWEExtProd (gsw: SRPA, rlwe in: SRPA):
decomp rlwe 0 = gadget decomp (rlwe in[0], B, 1)
decomp rlwe 1 = gadget decomp (rlwe in[l], B, 1)
decomp rlwe 0 ft = sr batch ft(decomp rlwe 0, 1)
decomp rlwe 1 ft = sr batch ft(decomp rlwe 1, 1)
rlwe tmp = SRPA(2)
rlwe tmp[0] = sr zeros(N)
rlwe tmp[l] = sr zeros (N)
for level in range(l):
rlwe tmp[0] = sr add(rlwe tmp[O0],
sr mul (decomp rlwe 0 ftf[l],
gswl[4*1]))
rlwe tmp[l] = sr add(rlwe tmp[1l],
sr mul (decomp rlwe 0 ftf[l],
gswl[4*1+1]))
sr add(rlwe tmp[O0],
sr mul (decomp rlwe 1 ftf[l],
gswl[4*1+2]))
sr add(rlwe tmp[1l],

rlwe tmp[0]

rlwe tmp([1l]




sr mul (decomp rlwe 1 ftf[l],
gsw[4*1+3]))
return sr batch ift(rlwe tmp)

Optional Operations

These are operations that are not implementable using the baseline operations, but that some
hardware might choose to implement. Optional operations provide an avenue for defining direct,
optimized hardware implementations of scheme-specific operations.

As mentioned in the section on basic data types, we will often refer to polynomials and scalars
according to their first metadata field, namely with the descriptor “integer” or “non-integer”. For
the purposes of distinguishing the optional operations defined here from the required baseline
operations, we use the “non-integer” descriptor to indicate that all the inputs and outputs are
non-integer polynomials and non-integer scalars. Please refer to the section on basic data types
for the definitions of the terms “non-integer polynomial” and “non-integer scalar”.

Non-integer Polynomial Addition

Takes as input two non-integer polynomials, a and b, and returns a single non-integer
polynomial. The return value is the component-wise sum of a and b.

f=sr addp(a, b) — f=a, +b,

Non-integer Polynomial Scalar Addition

Takes as input a non-integer polynomial a and a scalar s, and returns a single non-integer
polynomial. The operation adds s to every component of a. For a in the coefficient
representation, the operation adds s to the first coefficient of a and returns the resulting
polynomial.

f=sr_addps(a.s) — fi=a,+s

f=sr _addps_coeff(a, s) — f,=a,+s. f.,=a;

Non-integer Polynomial Negation

Takes as input a single integer polynomial, a, and returns a single integer polynomial. The return
value is the component-wise negation of each component of a.

f=sr negp(a) — f.=-a;

Non-integer Polynomial Subtraction

Takes as input two non-integer polynomials, a and b, and returns a single non-integer
polynomial. The return value is the component-wise difference of a and b.



f=sr subp(a.b) — f=a._-b;

Non-integer Polynomial Scalar Subtraction

Takes as input a non-integer polynomial a and a scalar s, and returns a single non-integer
polynomial. The operation subtracts s from every component of a. For a in the coefficient
representation, the operation subtracts s from the first coefficient of a and returns the resulting
polynomial.

f=sr subps(a,s) — f=a,-s

f=sr_subps_coeff(a. s) — f,=a,-s. f.y=3

Non-integer Polynomial Multiplication

Takes as input two non-integer polynomials, a and b, and returns a single non-integer
polynomial. The return value is the component-wise product of a and b.

f=sr_mulp(a. b) — f=a, xb,

Non-integer Polynomial Scalar Multiplication

Takes as input a non-integer polynomial a and a scalar s, and returns a single non-integer
polynomial. The return value is the component-wise product of every component of a by s.

f=sr mulps(a,s) — f=a,xs

Negacyclic Fourier Transform

This operation is a possible alternative to the Negacyclic NTT for hardware supporting only the
FHEW and/or TFHE schemes. It takes as input a polynomial with complex coefficients and
returns another polynomial with complex coefficients obtained as follows, where N denotes the
degree of the cyclotomic polynomial (we assume N is a power of 2):

e Starting from the input polynomial p,, define the polynomial p, whose coefficients are
those of p, multiplied by powers of a (2N)th primitive complex root of unity, i.e. a complex
number of the form exp(i 7 r / N) where r is a fixed odd integer. If p, is written as

P1=P1o+ Pra X+ P X+ o+ pypag XV,
the polynomial p, may thus be written as
P2=prorexpimr/N)p, X+expimr/N)p,X°+..+exp((N-1)itmr/N)

Ping X7,
e Define the polynomial p; whose coefficients form the Fourier transform of those of p, .
e Output p; .

Note that the above sequence of operations is illustrative only. Actual implementations may
organize the computation differently provided the relation between input and output is kept.

The input of the Fourier transform may, depending on the implementation, be represented in
integer, fixed-point, or floating-point form. For implementations where the input is in integer



form, the negacyclic Fourier transform must include a conversion step from integer to fixed- or
floating-point representation.

Inverse Negacyclic Fourier Transform

This operation (denoted sr_ift) is a possible alternative to the Inverse Negacyclic NTT for
hardware supporting only the FHEW and/or TFHE schemes. It must be used if and only if the
Negacyclic Fourier Transform is used in place of the Negacyclic NTT. It may be computed as
follows:
e Starting from the input polynomial p,, define the polynomial p, whose coefficients form
the inverse Fourier transform of those of p, .
e Define the polynomial p; whose coefficients are those of p, multiplied by powers of the
inverse of the root of unity used for the Negacyclic Fourier transform. If p, is written as
P2 = P20+ Po1 X+ Pa2 X2+ .+ Py XV,
the polynomial p; may thus be written as
Ps = Pao *+ €XP(-i T r/ N)py X +exp(-2imr/N)p, X2+ ... +exp(-(N-1)immr/N)
Pont XV
e Output p; .

The output of the inverse Fourier transform may, depending on the implementation, be
represented in integer, fixed-point, or floating-point form. For implementations where the output
is in integer form, the negacyclic Fourier transform must include a conversion step from fixed- or
floating-point representation to integer.

Coefficient Extraction

Takes as input a polynomial p and an integer index /, required to be smaller than the length of
the polynomial, and returns a scalar value equal to the ith component of p.
In pseudocode appearsas x = p[i] orx = CoeffExtract(p,1i)

Coefficient Assignment

Takes as input a polynomial p, an integer index i, and a value val and returns a polynomial with
updated component val at position i.

In pseudocode, we write this x=CoeffAssign(p,i,val), or p[i]=val in case in-place
assignment is meant.

Torus Modular Reduction

Takes as input a non-integer polynomial p and a real number ¢ and returns a polynomial p’ with
coefficients in the range [c-0.5, c¢+0.5) equal to those of p up to the addition of an integer
polynomial.



Hardware may restrict the possible values of ¢ or even support only one value (typical choices
are 0 and 0.5).

Sample Extraction

This operation is only used by the TFHE and FHEW schemes. It takes as input an RLWE cipher
(a, b) and returns an LWE cipher obtained by taking the first coefficient of a, followed by the n-2
opposites of the last coefficients of a in reverse order, where n is the LWE dimension, followed
by the first coefficient of b.

Gadget Decomposition

This operation is only used by the TFHE and FHEW schemes. It takes as inputs a polynomial pg
and two positive integers | (humber of decomposition levels) and b (decomposition basis), and
returns an array of | polynomials p4, p,, ..., p; such that
e Each coefficient of each input polynomial is in the range [0, b-1] if using unsigned
integers or [-(b+1)/2, b/2] if using signed integers.
e The coefficients of (p; + b p,,+ ... + b p,) K differ from those of p, by less than E in
absolute values, where K and E are parameters possibly dependent on | and b.
Hardware supporting the TFHE scheme should support Gadget Decomposition for at least one
value of (I, b, K, E) compatible with the other supported parameters.

CKKS Bootstrapping

This tentative example optional operation promises to perform the bootstrapping for a given
security level (e.g. 128bits classical), precision (e.g. 25bits) and probability of bootstrapping
failure (e.g. 2°%). All parameter values provided below are given as an example only. Much more
specification would be needed to fully instantiate this idea as an Optional Operator. Also note
that this operation takes as inputs and provides as outputs multi-residue polynomial arrays
(MRPAs); for the definition of these objects, please see the section of the same name later in
this document.

Inputs:
e ct in - MRPA of length 2 - the input ciphertext to be bootstrapped, with each of the two
contained MRPs being with a base representing a modulus Q, of 60bits.
e Aux_Data - MRPA of some length, including key switching keys and plaintext
polynomials required for the operation.
Output:
e ct out - MRPA of length 2 - the refreshed ciphertext, with each of the two contained
MRPs being with a base representing a modulus Q, of 420bits.



Information that should flow upward

A hardware solution should provide at least a minimum advertisement of its capabilities so that
a compiler can make choices in code generation. At minimum, the following information must be
provided in IR form for use by a relevant compiler:
e Ring dimension
RNS field size
Maximum length of modulus chain
A list of available Gadgets (subset of the full list specified in this standard)
Optional operations supported, if any (again - a subset of what the standard defines)

Information that should flow downward

This should include the parameter choices and the instructions used by the program.

The following information should flow downward from the IR to the assembler and hardware
layers:

Ring dimension to be used in executing the code in an IR instance.

List of primes for RNS representation to be used.

Whether a polynomial is in coefficient form or evaluation form

Precision of coefficients

Prime congruence for the list of primes

Instruction sequence

Future Enhancements

This section lays out some ideas for future additions to the specification, but makes no demands
on the current specification. We welcome the input of all participants in developing these ideas
more fully!

Cost modeling and optimization

This is intended to build on the above advertisements of information upward, providing further
avenues of optimization. For example, the hardware could advertise the cost of individual
operations and the available memory.

Explicit Parallelism

It may be useful to allow downstream instruction sequences to be expressed with explicit
parallelism opportunity, along the lines of Very Long Instruction Word (VLIW) architectures such
as the original Intel® Itanium™ instruction bundling approach. The idea would be to allow a
compiler to group or bundle instructions together, and allow hardware the option of following that



guidance in part or in full as a way of simplifying on-board scoreboarding and dependency
analysis.

Memory Hierarchy Upward Advertisement

An advantage that FHE programs have over traditional programs that exhibit dynamic control
flow is that all data access patterns are fully knowable at compile time. Thus it seems very likely
that compiler action could mitigate the need for additional hardware such as cache tags and set
associativity logic that are typically used to optimize memory placement of data. However, this
puts the onus for such optimization squarely on the compiler. Example: the re-use of a
polynomial in several instructions that appear nearby in execution order of a program presents
an opportunity to keep that polynomial “handy” so as to not repeatedly move it within the
memory hierarchy. Compilers are quite good at managing memory in this way, while hardware
(in the absence of caches) is not. However, a compiler would need to understand the memory
hierarchy provided by hardware in order to manage it effectively.

We may want to include upstream advertising of memory hierarchy structure to enable
compilers to manage hierarchy use in optimizing for locality of reference. Such advertisement
would likely include a description of the size and shape of each layer of accelerator memory
structure, latencies and bandwidths between those layers, and the graph of connectivity among
those layers. A syntax will be needed here that’s concise but detailed enough.

Additional gadget class

In addition to the simple and complex gadget classes already specified, we also acknowledge
the potential for another class of gadgets we would tentatively describe as “approximate”. These
would be gadgets for which the proposed implementation in terms of baseline/optional
operations would only be required to be equivalent to the semantics of the gadget as described.
However, in order to make this definition precise, we need to specify what we mean by
“equivalent” in this context.

New gadgets

During the Hardware Breakout Session at the 8th HomomorphicEncryption.org Standards
Meeting, CryptoLab expressed interest in contributing an example gadget for RNS GSWxRLWE
multiplication. At the same meeting, the Belfort team also indicated their interest in adding a
gadget for a batched key-switching plus programmable bootstrapping operation. We envision
including such gadget specifications in future versions of the standard.

PRNG specification

There is general agreement on the utility of hardware PRNGs in this context. However, given
the need to coordinate between hardware and software, it is unclear how best to specify these



and appropriately propagate that specification from hardware through to software. The group
should explore any existing standards and decide on an approach.

Appendix: Syntax (Under Development)

The current in-progress draft of the syntax is here.
Examples towards developing the syntax (Under Development)

TFHE Programmable Bootstrapping (PBS)

Parameters (example value):
LWE_WORD_SIZE (12 bits)
LWE_DIMENSION (938)
RLWE_WORD_SIZE (32 bits)
RLWE_DIMENSION (2048)
DECOMPOSITION_LEVELS (3)
LOG_DECOMPOSITION_BASIS (6)
MODULUS (1 << 32)

High-level pseudocode (C-like syntax):

NOTE: This pseudo-code is only provided as an example to illustrate which operations may be
required in a TFHE workflow. It does not constitute a reference description of the PBS nor
specifies how the PBS should be implemented.

void pbs(const lwe_coeff_t* const lwe_location,
const rlwe_coeff_tx const lut_location,
const rlwe_coeff_t* const pbs_key_location,
const rlwe_coeff_t* rlwe_temp,
const rlwe_coeff_t* gsw_temp,
const lwe_coeff_tx lwe_output)

// Cleartext negacyclic rotation

load(lut_location, rlwe_temp, 2 * RLWE_DIMENSION);

negacyclic_rotation(rlwe_temp, rlwe_temp, lwe_location[0],
RLWE_DIMENSION, MODULUS);

// Blind rotation
for (unsigned int i = 1; i <= LWE_DIMENSION; ++i) {
negacyclic_rotation(rlwe_temp, rlwe_temp + 2 * RLWE_DIMENSION,
lwe_location[i], RLWE_DIMENSION, MODULUS);


https://docs.google.com/document/d/1WIswyWwcr0FENntnWk89eyFm42BYctT3wS5tPe3xpak/edit?usp=sharing

mod_sub(rlwe_temp + 2 * RLWE_DIMENSION, rlwe_temp,
2 *» RLWE_DIMENSION,
rlwe_temp + 4 * RLWE_DIMENSION, MODULUS);
gadget_decomposition(rlwe_temp + 4 x RLWE_DIMENSION,
rlwe_temp + 6 * RLWE_DIMENSION,
DECOMPOSITION_LEVELS,
LOG_DECOMPOSITION_BASIS, MODULUS);
zero(rlwe_temp + 2 * RLWE_DIMENSION, 2 * RLWE_DIMENSION);

for (unsigned int j = 0; j < DECOMPOSITION_LEVELS; ++j) {
forward_transform(rlwe_temp + (6 + 2*j) * RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
forward_transform(rlwe_temp + (6 + 2xj + 1) = RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
load(pbs_key_location
+ 4 % RLWE_DIMENSION * (i * DECOMPOSITION_LEVELS + j),
gsw_temp, 2 * RLWE_DIMENSION);
mod_mul(rlwe_temp + (6 + 2%j) * RLWE_DIMENSION, gsw_temp,
gsw_temp, 2 * RLWE_DIMENSION, MODULUS);
mod_add(rlwe_temp + 2 * RLWE_DIMENSION, gsw_temp,
rlwe_temp + 2 % RLWE_DIMENSION,
2 = RLWE_DIMENSION, MODULUS);
load(pbs_key_location
+ 4 % RLWE_DIMENSION * (i * DECOMPOSITION_LEVELS + j)
+ 2 % RLWE_DIMENSION,
gsw_temp, 2 * RLWE_DIMENSION);
mod_mul(rlwe_temp + (6 + 2%*j) = RLWE_DIMENSION, gsw_temp,
gsw_temp, 2 * RLWE_DIMENSION, MODULUS);
mod_add(rlwe_temp + 2 * RLWE_DIMENSION,
gsw_temp + RLWE_DIMENSION,
rlwe_temp + 2 * RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
mod_add(rlwe_temp + 3 * RLWE_DIMENSION,
gsw_temp, rlwe_temp + 3 * RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
}
inverse_transform(rlwe_temp + 2 * RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
inverse_transform(rlwe_temp + 3 * RLWE_DIMENSION,
RLWE_DIMENSION, MODULUS);
mod_add(rlwe_temp, rlwe_temp + 2 * RLWE_DIMENSION, rlwe_temp,
2 = RLWE_DIMENSION, MODULUS);



}

// Sample extraction (conversion from RLWE to LWE)
lwe_output[0] = rlwe_temp[RLWE_DIMENSION];
for (unsigned int i = 1; i <= LWE_DIMENSION; ++i) {
lwe_output[i] =
mod_negative(rlwe_temp[ (RLWE_DIMENSION - i) % RLWE_DIMENSION],
MODULUS) ;

High-level pseudocode (C++-like syntax with Polynomial template):

NOTE: This pseudo-code is only provided as an example to illustrate which operations may be
required in a TFHE workflow. It does not constitute a reference description of the PBS nor
specifies how the PBS should be implemented.

typedef Polynomial<rlwe_coeff_t,RLWE_DIMENSION,MODULUS> poly_t;

void pbs(const lwe_coeff_t* const lwe_location,
const poly_t& lut,
const poly_t* const pbs_key,
const poly_t* rlwe_temp,
const poly_t+* gsw_temp,
const lwe_coeff_tx lwe_output)

// Cleartext negacyclic rotation
load(lut, rlwe_temp, 2); // Question: replace with a hint?
negacyclic_rotation(rlwe_temp, rlwe_temp, lwe_location[0]);

// Blind rotation
for (unsigned int i = 1; i <= LWE_DIMENSION; ++i) {
negacyclic_rotation(rlwe_temp, rlwe_temp + 2, lwe_location[i]);
mod_sub(rlwe_temp + 2, rlwe_temp, rlwe_temp + &4, 2);
gadget_decomposition(rlwe_temp + 4, rlwe_temp + 6,
DECOMPOSITION_LEVELS,
LOG_DECOMPOSITION_BASIS);
zero(rlwe_temp + 2, 2);

for (unsigned int j = 0; j < DECOMPOSITION_LEVELS; ++3j) {
forward_transform(rlwe_temp + 6 + 2xj);
forward_transform(rlwe_temp + 6 + 2xj + 1);
load(pbs_key_location + 4 % (i * DECOMPOSITION_LEVELS + j),



gsw_temp, 2);
mod_mul(rlwe_temp + 6 + 2%j, gsw_temp, gsw_temp, 2);
mod_add(rlwe_temp + 2, gsw_temp, rlwe_temp + 2, 2);
load(pbs_key_location
+ 4 * (i * DECOMPOSITION_LEVELS + j)
+ 2, gsw_temp, 2);
mod_mul(rlwe_temp + 6 + 2+j, gsw_temp, gsw_temp, 2);
mod_add(rlwe_temp + 2, gsw_temp + 1, rlwe_temp + 2);
mod_add(rlwe_temp + 3, gsw_temp, rlwe_temp + 3);
}
inverse_transform(rlwe_temp + 2);
inverse_transform(rlwe_temp + 3);
mod_add(rlwe_temp, rlwe_temp + 2, rlwe_temp, 2);

}

// Sample extraction (conversion from RLWE to LWE)
lwe_output[0] = get_coefficient(rlwe_temp[1], 0);
for (unsigned int i = 1; i <= LWE_DIMENSION; ++i) {
lwe_output[i] =
mod_negative(get_coefficient(
rlwe_temp[0],
(RLWE_DIMENSION - i) % RLWE_DIMENSION),
MODULUS) ;

Batched TFHE Key-Switching + Programmable Bootstrapping (KS-PBS)

Motivation: Existing FPGA implementations of TFHE benefit from working at a very high level
and on batches of ciphers to optimize data pipelining. The TFHE scheme is particularly
well-suited for that as most workflows can be formulated in a way where most of the runtime is
due to a well-defined sequence of instructions, made of key-switching and PBS operations. This
gadget would provide a single black-box ‘batched key-switching and PBS’ instruction with a
well-defined interface.

Parameters (example value):
LWE_WORD_SIZE (12 bits)
LWE_DIMENSION (938)
RLWE_WORD_SIZE (32 bits)
RLWE_DIMENSION (2048)
PBS_DECOMPOSITION_LEVELS (1)
PBS_LOG_DECOMPOSITION_BASIS (23)



KS_DECOMPOSITION LEVELS (2)
KS_LOG_DECOMPOSITION_BASIS (15)
MODULUS (1 << 64)

Description:

Inputs:

batch_size (unsigned integer)

Set of batch_size LWE ciphers representing the input data

Set of batch_size RLWE ciphers representing (plaintext or encrypted) LUTs
Key-switching key

Bootstrapping key

Output: Set of batch_size LWE ciphers representing the output data

High-level description:
1. Run LWE key-switching on the input LWE ciphers.
1. 2. Run the TFHE PBS on the output of key-switching.

High-level pseudocode:
typedef Polynomial<rlwe_coeff_t,RLWE_DIMENSION,MODULUS> poly_t;

void ks(const size_t batch_size,
const lwe_coeff_t* const lwe_location,
const rlwe_coeff_t* const ks_key_location,
const lwe_coeff_t* lwe_output)
{
for (unsigned int i = 0; i < batch_size; ++i) {
const lwe_coeff_t
lwe_decomposed[KS_DECOMPOSITION_LEVELS][LWE_DIMENSION];
gadget_decomposition(lwe_input + i*SIZE_LWE, lwe_decomposed,
KS_DECOMPOSITION LEVELS,
KS_LOG_DECOMPOSITION BASIS);
lwe_coeff_t lwe_temp[LWE_DIMENSION];
for (unsigned int j = 0; j < KS_DECOMPOSITION_LEVELS; ++j) {
for (unsigned int k = 0; j < LWE_DIMENSION; ++k) {
lwe_temp[k] = sr_addp(lwe_temp[k],
sr_mulp(lwe_decomposed[j][k],
ks_key_location + j*LWE_DIMENSION + k, 2*RLWE_DIMENSION),
2%xRLWE_DIMENSION);
}
}



}
}

void ks_pbs(const size_t batch_size,
const lwe_coeff_t* const lwe_location,
const poly_t& lut,
const rlwe_coeff_t* const ks_key_location,
const poly_t* const pbs_key,
const poly_t+* rlwe_temp,
const poly_t* gsw_temp,
const lwe_coeff_tx lwe_temp,
const lwe_coeff_t* lwe_output)

for (unsigned int i = 0; i < batch_size; ++i) {
ks(lwe_location + i*LWE_DIMENSION, ks_key_location,
lwe_temp);
pbs(lwe_temp, lut_location, pbs_key, rlwe_temp,
gsw_temp, lwe_output + i*SIZE_LWE);
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